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Abstract

We describe a set of initial data in the abstract Cauchy problem for the linear
equation with the Caputo fractional derivative and an unbounded linear closed
operator A in a Banach space X

Dα∗ x(t) = Ax(t), m − 1 < α ≤ m ∈ N,
dk

dtk
x(t)|t=0 = ξk, k = 0, . . . ,m − 1

for which the corresponding solutions can be represented by means of the Mittag-
Leffler operator function. Some properties of the Mittag-Leffler operator function
are given.
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1. Introduction

Ordinary and partial differential equations of fractional order (with the frac-
tional derivatives in Caputo, Riemann-Liouville or inverse Riesz potential sense)
have excited in recent years a considerable interest both in mathematics and in
applications (see [4], [6]-[14], [17], [19] and references there). In mathematical
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treatises on fractional differential equations the Riemann-Liouville approach to
the notion of the fractional derivative of order α (α ≥ 0) is normally used:

Dαx(t) :=
(

d

dt

)m

Jm−αx(t), t > 0, m − 1 < α ≤ m ∈ N, (1)

where

Jαx(t) :=
1

Γ(α)

∫ t

0
(t − τ)α−1x(τ)dτ, α > 0, t > 0, (2)

J0x(t) := x(t), t > 0

is the Riemann-Liouville fractional integral of order α. The Riemann-Liouville
fractional derivative is left-inverse (and not right-inverse) to the corresponding
fractional integral, which is the natural generalization of the Cauchy formula
for the n-fold primitive of a function x(t). In formulation of the initial value
problems for ordinary (or the Cauchy problem for partial) differential equations of
fractional order α with the fractional derivatives in the Riemann-Liouville sense
(see, for example, [10], [13], [17], [19]) the initial conditions are given in terms
of the fractional integrals Jm−k−αx(k)(0+), k = 0, 1, . . . ,m − 1. On the other
hand, in modeling of real processes the initial conditions are normally expressed
in terms of a given number of bounded initial values assumed by the field variable
x and its derivatives of integer order. In order to meet this physical requirement,
an alternative definition of fractional derivative was introduced by Caputo [3]
and adopted by Caputo and Mainardi in the framework of the theory of linear
viscoelasticity:

Dα
∗ x(t) := Jm−αx(m)(t) =

1
Γ(m − α)

∫ t

0
(t − τ)m−α−1x(m)(τ)dτ, (3)

m − 1 < α ≤ m ∈ N, t > 0.

In the papers [2], [9] the Caputo derivative (3) in the case 0 < α < 1 was called
the regularized fractional derivative of order α.

Using ideas related to the theory of first and second order abstract differential
equations, some results have been obtained for the abstract Cauchy problem for
the linear fractional differential equation

Dα∗ x(t) = Ax(t), m − 1 < α ≤ m ∈ N, 0 < t < T ≤ +∞
dk

dtk
x(t)|t=0 = ξk, k = 0, . . . ,m − 1,

(4)

where A : D(A) → X, D(A) ⊂ X is a linear unbounded closed operator in a
Banach space X. In the papers [2], [9] the necessary and sufficient conditions for
solvability of the Cauchy problem (4) in the case 0 < α < 1 were given, extending
the conditions of the Hille-Yosida theorem from α = 1 to α ∈ (0, 1]. The case
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0 < α ≤ 2 was considered in [4]. In the paper [10] the solvability conditions for
the abstract Cauchy problem (4) with the Riemann-Liouville fractional derivative
instead of the Caputo derivative and the initial conditions given in terms of the
fractional integrals Jm−k−αx(k)(0+), k = 0, 1, . . . ,m − 1 have been obtained in
the case α > 0.

The other, equivalent approach to the Cauchy problem (4) consists in the
reduction of this problem to an evolutionary integral equation of the type

x(t) = f(t) +
∫ t

0
k(t − τ)Ax(τ) dτ, t ≥ 0, (5)

where k ∈ L1
loc(R+) is a scalar kernel. The general theory of such equations (also

in the non-scalar case, i.e., k(s) ≡ 1, s ∈ R+ and an operator A(t − τ) depends
on t − τ) was presented in [18]. The special case of the kernel k(s) = sα−1/Γ(α)
and the differential operator A of first order for 0 < α ≤ 1, of second order for
1 < α ≤ 2, in a Hilbert space was considered in details in [4], [20]. The last
reference contains also investigations of numerical methods for this problem.

It is known ([12]) that if X = R or X = C and the operator A can be identified
with a multiplicative constant the unique solution of the Cauchy problem (4) for
t ≥ 0 is given by the formula

x(t) =
m−1∑
k=0

ξkxk(t), xk(t) = tkEα,k+1(Atα) (6)

with the generalized Mittag-Leffler function defined by

Eα,β(z) =
∞∑

n=0

zn

Γ(β + αn)
, z ∈ Z. (7)

The partial solutions xk(t), k = 0, 1, . . . ,m − 1 can be also represented in the
form ([6], [12])

xk(t) = Jku0(t), u0(t) = Eα,1(Atα) := Eα(Atα),

where Jk is the k-fold integral (replace α by k in (2)) and

Eα(z) := Eα,1(z) =
∞∑

n=0

zn

Γ(1 + αn)
(8)

is the classical Mittag-Leffler function.
Let now X be a general Banach space and A be a linear unbounded closed

operator on this space. Using the methods, given in [1], [16] for the case α = 1 we
describe those initial data of the Cauchy problem (4) for which the solutions may
be also represented in the form (6). This description is done in terms of so-called
Roumieu spaces generated by the operator A and their inductive and projective
limits, the Gevrey and Beurling spaces.
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2. Linear equations of fractional order

In the case of an unbounded operator A the right-hand side of the relation
(6) is not defined on the whole Banach space X. We can however investigate
the conditions for ξ = (ξ0, . . . , ξm−1), ξk ∈ X, k = 0, . . . ,m − 1 under which the
time-dependent operator Eα(Atα) : Xm → X with

Eα(Atα)ξ :=
m−1∑
k=0

tkEα,k+1(Atα)ξk, (9)

tkEα,k+1(Atα)ξk :=
∞∑

n=0

tαn+kAnξk

Γ(1 + k + αn)
, m − 1 < α ≤ m ∈ N

is well defined. We shall refer to the operator Eα(Atα) given by (9) as to the
Mittag-Leffler operator function.

We prove that for such ξ = (ξ0, . . . , ξm−1) the formula (9) defines a solution
of the Cauchy problem (4). The description of the set of the initial conditions
for which the Cauchy problem (4) has a solution in the form (9) can be given in
terms of the Roumieu spaces generated by the operator A (see [1], [5], [16]).

Definition 2.1. Let A be a linear unbounded operator in a Banach space
X, µ = {µn}∞0 be a sequence with µ0 = 1, µn > 0, n = 1, 2 . . ., and 0 < L < ∞.
The Roumieu space R(A,µ,L) is defined as the set of elements x ∈ X such that

sup
0≤n<∞

‖Anx‖
Lnµn

< ∞.

Equipped with the norm

‖x‖R(A,µ,L) = sup
0≤n<∞

‖Anx‖
Lnµn

, (10)

this space is a Banach space continuously embedded in the space X.
We shall also use the Beurling and Gevrey spaces

B(A,µ) =
⋂

0<L<∞
R(A,µ,L), G(A,µ) =

⋃
0<L<∞

R(A,µ,L).

These spaces equipped with the topologies of inductive and projective limits,
respectively, are locally convex spaces.

One of the most important problems in the theory of the Roumieu, Beurling
and Gevrey spaces in connection with the abstract Cauchy problem for differential
equations of fractional order is the problem of density of these spaces in the original
space X. For the survey of some results for the classical case µ = {(n!)α}∞0 , 0 ≤
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α < ∞ see, e.g., the paper [1]. It should be noted that most results in this
direction have been obtained for the cases α = 0, α = 1, and α > 1. Few if any
could be found in the case 0 < α < 1, and this case should be yet investigated.

In this article we shall deal with the Roumieu spaces with the sequence µ =
{Γ(1+αn)}∞0 , α ≥ 0, which will be denoted as Rα(A,L). The connection of these
spaces to the classical Roumieu spaces R̃α(A,L) := R(A,µ,L) with µ = {(n!)α}∞0
is given by the following simple results.

Lemma 2.1. The inclusions

R̃α(A,L2) ⊆ Rα(A,L) ⊆ R̃α(A,L1)

hold true for α ≥ 0 and every L, L1, and L2 if L1 > ααL > L2.

P r o o f. The case α = 0 is evident. For α > 0, making use of Stirling’s
asymptotic formula for the gamma function (see, for example, [15]), we get the
estimate

(n!)α

Γ(1 + αn)
≤ C1n

α/2−1/2α−αn, n ≥ 1,

with a constant C1 depending on α. This estimate implies the inclusions (11) and
(12):

R̃α(A,L2) ⊆ Rα(A,L) for every L2 < ααL, (11)

Rα(A,L) ⊆ R̃α(A,L1) for every L1 > ααL. (12)

Combining (11) and (12) we get Lemma 2.1.
As a direct consequence of the previous Lemma and the definitions of the

Beurling and Gevrey spaces we get the following result:

Lemma 2.2. For the Beurling and Gevrey spaces Bα(A), Gα(A), B̃α(A), G̃α(A)
generated by the families of the Roumieu spaces Rα(A,L) and R̃α(A,L), respec-
tively, we have the identities

Bα(A) = B̃α(A), Gα(A) = G̃α(A). (13)

We describe now a set of initial data of the Cauchy problem (4) in a Banach
space X for which the solutions can be represented in the form (9). We do this
in terms of the Roumieu spaces Rα(A,L) generated by the operator A.

Theorem 2.1. Let A be a linear unbounded closed operator in a Banach
space X and ξ0, . . . , ξm−1 ∈ X.

If a solution of the form (9) of the Cauchy problem (4) exists on the interval
[0, L] then ξk ∈ Rα(A,L1), k = 0, . . . ,m − 1 for every L1 > L−α.

Conversely, if for some L, ξk ∈ Rα(A,L), k = 0, . . . ,m − 1, then the Mittag-
Leffler operator function given by (9) defines a solution of the Cauchy problem
(4) on the interval [0, L−1/α).
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P r o o f. Let the function

x(t) =
m−1∑
k=0

∞∑
n=0

tαn+kAnξk

Γ(1 + k + αn)

with fixed ξk ∈ X, k = 0, . . . ,m − 1 be defined on the interval [0, L]. Then

lim
n→∞

tαn+kAnξk

Γ(1 + k + αn)
= 0, 0 ≤ t ≤ L, k = 0, . . . ,m − 1,

and, consequently,

lim
n→∞

‖Anξk‖Lαn

Γ(1 + k + αn)
= 0, k = 0, . . . ,m − 1.

Using the asymptotic formula [15]

Γ(a + s)
Γ(b + s)

= sa−b[1 + O(1/s)], | arg s| ≤ π − δ, 0 < δ < π, |s| → ∞, (14)

we arrive for every L1 > L−α at the relation

lim
n→∞

‖Anξk‖
Ln

1Γ(1 + αn)
= lim

n→∞
‖Anξk‖Lαn

Γ(1 + k + αn)

× lim
n→∞

(
1

L1Lα

)n Γ(1 + k + αn)
Γ(1 + αn)

= 0, k = 0, . . . ,m − 1,

which implies the inclusion ξk ∈ Rα(A,L1), k = 0, . . . ,m − 1.
Conversely, let ξk ∈ Rα(A,L), k = 0, . . . ,m− 1. Since Γ(1 + αn) ≤ Γ(1+ k +

αn), k = 0, . . . ,m − 1, n ∈ N, the series

∞∑
n=0

tαn+kAnξk

Γ(1 + k + αn)
, k = 0, . . . ,m − 1

is absolutely and uniformly convergent on every compact subset of the interval
[0, L−1/α). Hence this series defines for every fixed t ∈ [0, L−1/α) a linear operator
(we denote it by tkEα,k+1(Atα)) from Rα(A,L) into X. If we fix an element
ξk ∈ Rα(A,L) then the function

t 
→ xk(t) =
∞∑

n=0

tαn+kAnξk

Γ(1 + k + αn)
, k = 0, . . . ,m − 1 (15)

is continuous on the interval [0, L−1/α). We also have

xk(0) =
{

ξ0, k = 0,
0, k = 1, . . . ,m − 1.
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Let us prove that xk ∈ Cm−1[0, L−1/α) ∩ Cm(0, L−1/α). Indeed, by formal differ-
entiation of (15) we get the series

Q0(t) =
∞∑

n=1

(αn)tαn−1Anξ0

Γ(1 + αn)
for k = 0,

Qk(t) =
∞∑

n=0

(αn + k)tαn+k−1Anξk

Γ(1 + k + αn)
, k = 1, . . . ,m − 1.

which are absolutely and uniformly convergent on every compact subset of the
interval (0, L−1/α) ([0, L−1/α) in the case m > 1). Hence d

dtxk(t) = Qk(t), k =
0, . . . ,m− 1, and xk ∈ C1(0, L−1/α) (xk ∈ C1[0, L−1/α) in the case m > 1) for all
k = 0, . . . ,m − 1. In the case m > 1 we can directly check that

d

dt
xk(t)|t=0 =




0, k = 0,
ξ1, k = 1,
0, k = 2, . . . ,m − 1.

Repeating the same arguments m times and using the formula

Γ(a + n)
Γ(a)

= a · . . . · (a + n − 1), n ∈ N

we arrive at the expressions

dm

dtm
xk(t) =

∞∑
n=1

(αn + k) · . . . · (αn + k − m + 1)tαn+k−mAnξk

Γ(1 + k + αn)
(16)

=
∞∑

n=0

tαn+α+k−mAn+1ξk

Γ(1 + k − m + α + αn)
, k = 0, . . . ,m − 1,

dl

dtl
xk(t)|t=0 = δlkξk, l, k = 0, . . . ,m − 1,

and the inclusion xk ∈ Cm−1[0, L−1/α) ∩ Cm(0, L−1/α), k = 0, . . . ,m − 1. Since
m − 1 < α ≤ m, all the functions t 
→ dm

dtm xk(t), k = 0, . . . ,m − 1 are integrable
on the interval (0, L−1/α).

Using the formula

(Jµpν)(t) =
Γ(1 + ν)

Γ(1 + ν + µ)
tν+µ, µ ≥ 0, pν(t) := tν , ν > −1,

and the expressions (16) we get (m − 1 < α ≤ m)

Dα
∗ xk(t) = Jm−α dm

dtm
xk(t) =

∞∑
n=0

Γ(1 + k − m + α + αn)
Γ(1 + k + αn)
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× tαn+kAn+1ξk

Γ(1 + k − m + α + αn)
=

∞∑
n=0

tαn+kAn+1ξk

Γ(1 + k + αn)
, k = 1, . . . ,m − 1.

On the other hand, since the operator A is closed, we get

Axk(t) = A
∞∑

n=0

tαn+kAnξk

Γ(1 + k + αn)
=

∞∑
n=0

tαn+kAn+1ξk

Γ(1 + k + αn)
, k = 0, . . . ,m − 1.

Summarizing the obtained results we see that the operator-function (9) defines a
solution of the Cauchy problem (4) on the interval [0, L−1/α).

Corollary 2.1. The statement of Theorem 2.1 can be rewritten in terms
of Gevrey and Beurling spaces. Namely, the Mittag-Leffler operator function (9)
defines a solution of the Cauchy problem (4) on a suitable interval [0, L) (on
every interval [0, L)) if and only if ξk ∈ Gα(A), k = 0, . . . ,m−1 (ξk ∈ Bα(A), k =
0, . . . ,m − 1).

3. The Mittag-Leffler operator function

We consider now some properties of the Mittag-Leffler operator function Eα(Atα)
given by (9). For the sake of simplicity we restrict ourselves to the case 0 < α ≤ 1.
In this case (identifying ξ with ξ0) (9) goes over in

Eα(Atα)ξ = Eα(Atα)ξ :=
∞∑

n=0

tαnAnξ

Γ(1 + αn)
. (17)

Theorem 3.1. Let A be a linear unbounded closed operator in a Banach

space X, 0 < α ≤ 1, 0 < L1 < L2, h(L1, L2) = L
−1/α
1 [1 − (L1/L2)1/α]1/α.

Then the right-hand side of the relation (17) defines, for t ∈ [0, h(L1, L2)),
a continuous linear operator Eα(Atα) from Rα(A,L1) into Rα(A,L2) with the
norm estimate

‖Eα(Atα)‖L(Rα(A,L1),Rα(A,L2)) ≤
(

L2

L1

) 1
α

. (18)

P r o o f. For 0 < L1 < L2 the inequality L
−1/α
1 > h(L1, L2) holds true

(the number h(L1, L2) is given in Theorem 3.1). Then, according to the proof
of Theorem 2.1, Eα(Atα) ∈ L(Rα(A,L1),X) for t ∈ [0, h(L1, L2)). Furthermore,
we shall prove that the operator Eα(Atα) acts from the space Rα(A,L1) into the
space Rα(A,L2) with the norm estimate (18). We use the auxiliary inequality

Γ(β1 + αx)
Γ(β2 + αx)

≤ Γ(β1 + x)
Γ(β2 + x)

, if 0 < α ≤ 1, 0 < β2 ≤ β1, x ≥ 0, (19)
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which is a simple consequence of the Gauss summation theorem for the hyperge-
ometric function 2F1(z) ([15]):

2F1(β1 − β2, x − αx;β1 + x; 1) =
Γ(β1 + x)
Γ(β2 + x)

Γ(β2 + αx)
Γ(β1 + αx)

=

= 1 +
∞∑

k=1

(β1 − β2)k(x − αx)k
(β1 + x)kk!

≥ 1,

where (y)k = y(y + 1) . . . (y + k − 1) stands for Pochhammer’s symbol. Let us
prove (18). Using the inequality (19), the binomial series

(1 − z)−a =
∞∑

k=0

Γ(a + k)
Γ(a)Γ(1 + k)

zk, |z| < 1,

the inequality (ξ ∈ Rα(A,L))

‖Anξ‖ ≤ ‖ξ‖Rα(A,L)L
nΓ(1 + αn), n = 0, 1, . . . , (20)

following from (10), and some elementary evaluations, we get

‖Eα(Atα)ξ‖Rα(A,L2) ≤ sup
0≤n<∞

1
Ln

2Γ(1 + αn)

∞∑
k=0

tαk‖An+kξ‖
Γ(1 + αk)

≤ ‖ξ‖Rα(A,L1) sup
0≤n<∞

(
L1

L2

)n ∞∑
k=0

Γ(1 + α(n + k))
Γ(1 + αn)Γ(1 + αk)

(hα(L1, L2) · L1)k

≤ ‖ξ‖Rα(A,L1) sup
0≤n<∞

(
L1

L2

)n ∞∑
k=0

Γ(1 + αn + k)
Γ(1 + αn)Γ(1 + k)

(hα(L1, L2) · L1)k

= ‖ξ‖Rα(A,L1) sup
0≤n<∞

(
L1

L2

)n

(1 − hα(L1, L2) · L1)−1−αn

= ‖ξ‖Rα(A,L1)(1 − hα(L1, L2) · L1)−1 =
(

L2

L1

)1/α

‖ξ‖Rα(A,L1).

Remark 3.1. In the special case α = 1 we have h(L1, L2) = 1
L1

− 1
L2

and
the norm estimate (18) in the form

‖E1(At)‖L(R1(A,L1),R1(A,L2)) = ‖eAt‖L(R̃1(A,L1),R̃1(A,L2)) ≤
L2

L1
,

which is in accordance with the results of the paper [1]. If α → 0 then h(L1, L2) →
+∞ for all fixed L1, L2 with 0 < L1 < L2.
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Theorem 3.2. Let A be a linear unbounded closed operator in a Banach
space X, 0 < β < α ≤ 1, and L1 < L2.

Then the Mittag-Leffler operator function Eα(Atα) given by (17) is a contin-
uous linear operator from Rβ(A,L1) into Rβ(A,L2) for all t ∈ [0,∞), and

‖Eα(Atα)‖L(Rβ (A,L1),Rβ(A,L2)) ≤
(

L2

L1

)1/β

Eα−β

(
tαL1L

1/β
2

L
1/β
2 − L

1/β
1

)
. (21)

P r o o f. We need two auxiliary inequalities:

Γ(a + k)
Γ(a)Γ(1 + k)

≤ z−k(1 − z)−a for all a > 0, 0 < z < 1, k = 0, 1, . . . , (22)

and
Γ(1 + b)
Γ(1 + a)

≤ 1
Γ(1 + a − b)

, for all a > b > 0. (23)

To prove the first inequality we note that (a > 0, 0 < z < 1)

(1 − z)−a =
∞∑

j=0

Γ(a + j)
Γ(a)Γ(1 + j)

zj ≥ Γ(a + k)
Γ(a)Γ(1 + k)

zk, k = 0, 1, . . . .

Using the Gauss summation theorem for the hypergeometric function 2F1(z) we
get (a > b > 0)

2F1(a − b, b; 1 + a; 1) =
Γ(1 + a)Γ(1)

Γ(1 + b)Γ(1 + a − b)

= 1 +
∞∑

k=1

(a − b)k(b)k
(1 + a)kk!

≥ 1,

which proves (23). Now let ξ ∈ Rβ(A,L1) and t ∈ [0,∞). Using the inequalities
(19), (20), (22) (with z = 1 − (L1/L2)1/β), and (23), we have

‖Eα(Atα)‖Rβ(A,L2) ≤ sup
0≤n<∞

1
Ln

2Γ(1 + βn)

∞∑
k=0

‖An+kξ‖tαk

Γ(1 + αk)

≤ ‖ξ‖Rβ (A,L1) sup
0≤n<∞

(
L1

L2

)n ∞∑
k=0

Γ(1 + β(n + k))
Γ(1 + βn)Γ(1 + αk)

(tαL1)k

≤ ‖ξ‖Rβ (A,L1) sup
0≤n<∞

(
L1

L2

)n ∞∑
k=0

Γ(1 + βn + k)Γ(1 + βk)
Γ(1 + βn)Γ(1 + k)Γ(1 + αk)

(tαL1)k
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≤ ‖ξ‖Rβ (A,L1) sup
0≤n<∞

(
L1

L2

)n

(1 − z)−(1+βn)
∞∑

k=0

Γ(1 + βk)
Γ(1 + αk)

(tαL1)kz−k

≤ ‖ξ‖Rβ (A,L1)
1

1 − z

∞∑
k=0

(tαL1z
−1)k

Γ(1 + (α − β)k)

= ‖ξ‖Rβ (A,L1)

(
L2

L1

)1/β

Eα−β

(
tαL1L

1/β
2

L
1/β
2 − L

1/β
1

)
.
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Stetsenko: Approximate Solutions of Operator Equations. Wolters-Noordhoff
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